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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2832

THEEORETICAL STUDY OF THE TRANSONIC LIFT OF A DOUBLE-WEDGE'
PROFILE WITH IETACHED BOW WAVE -

By Walter G, Vincenti and Cleo B, Wagoner -
SUMMARY

A theoretical study is described of the aerodynamic characteristics
at small angle of attack of a thin, double-wedge profile in the range
of supersonic flight speed in which the bow wave is detached. The '
analysis is carried out within the framework of the transonic (nonlinear)
small-disturbance theory, and the effects of angle of attack are regarded
as a small perturbation on the flow préviously calculated at zero angle.

- The mixed flow about the front half of the profile is calculated by
relaxation solution of a suitably defined boundary-value problem for the
transonic small-disturbance equation in the hodograph plane (i.e., the

- Tricomi equation). The purely supersonic flow about the rear half i1s
found by an extension of the usual numerical method of characteristics.
Analytical results are also obtained, within the framework of the same
theory, for the range of speed in whlch the bow wave is attached and the
flow is completely supersonic.

The calculations provide, for vanishingly small angle of attack,
the following information as a function of the transonic similarity
parameter: (1) chordwise 1lift dlstrlbution, (2) lift-curve slope, and
(3) position of center of lift. As in previous studies, the aerodynamic
characteristics of a profile of given thickness ratio show little varia-
tion with free-stream Mach number as the Mach number passes through 1.
As the Mach number is increased to higher values, however, the 1ift-
curve slope rises to a pronounced maximum in the vicinity of shock
attachment and then declines. Correspondingly, -the center of 1ift moves
forward toward the leading edge and then returns aft. These findings
are in marked contrast to the behavior of the drag coefficient at zero
angle of attack, which was found in earlier work to decrease monotoni-
cally as the Mach number increased above 1. At Mach numbers asbove that
for shock attachment, the results of the present calculations tend toward

* : those given by cla551cal linear theory.

. lportions of this work were reported at the VIITth International
i ‘ Congress on Theoretical and Applied Mechanlcs, Istanbul, Turkey,
August 20-28 1952.
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INTRODUCTION

The theoretical problem of the transonic flow over a thin, double-
wedge profile at zero angle of attack has been treated in several papers’
in recent years. These papers have in common that they employ the
simplifying concepts of the transonic small-disturbance theory and
utilize the hodograph transformation to linearize the resulting mathe=-
matical problem. Following this approach, Guderley and Yoshihara
(reference 1) began by solving the problem for a free-stream Mach
number of 1, using analytical methods for the mixed flow over the front
wedge and the method of characteristics for the purely supersonlc flow
over the rear. Somewhat later, the present authors, using a combina-
tion of relaxation methods and the method of characteristics (refer-
ences 2 and 3), extended the results to free-stream Mach numbers greater
than 1, where a detached bow wave occurs ahead of the profile. At about
the same time, Cole (reference 4) obtained an analytical solution for
the flow over the front wedge at subsonic flight speeds, utilizing, in
effect, the special assumption of a vertical sonic line from the
shoulder of the wedge. More recently, Trilling (reference 5) has been
able to remove this special assumption and, with the aid of less strin~
gent approximations regarding the flow over the rear wedge, to extend
the solution for the subsonic case to include the complete profile. As
a result of these investigations, the problem of the double-wedge
profile at zero angle of attack may be regarded as substantially solved
within the limitations of the transonic small-disturbance theory. The
experimental studies of Liepmann and Bryson (references 6 and T7) and
Griffith (reference 8) indicate. that the theoretical findings are in
fundamental agreement with the physical facts. .

In a recent paper (reference 9), Guderley and Yoshihara have con-
tinued their investigations of the double-wedge profile at Mach number 1
by considering the influence of a vanishingly small angle of attack.

The basic idea in this later work is to regard the effects of angle of
attack as a first-order perturbation on the nonlinear flow previously
calculated at zero angle. This approach leads to a linear boundary-
value problem in both the physical and hodograph planes. The calcula-
tion for the front wedge is still carried out ‘however, in the hodograph
plane, since the basic procedures can then be taken over directly from :
the previous work. By this means, ‘Guderley and Yoshihara obtain results
for the lift-curve slope of the profile at zero angle of attack and for
the corresponding distribution of 1lift along the chord :

The aim of the present paper is to extend the results for the
double wedge at angle of attack to the case of supersonic flight with.
detached bow wave. The fundamental ideas of Guderley and Yoshihara are
followed in reducing the calculations for the front wedge to a perturba~
tion problem in the hodograph plane. The detailed formulation of the
problem is, however, necessarily different in the present case. The "

’
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boundary conditions for the problem appear in terms of the results
already obtained at zero lift (references 2 and 3), and the solution is
carried out by numerical methods which differ only sllghtly from those
devised for the earlier work. The 1lift on the rear wedge is calculated
by an extension of the method of characteristics. The body of the
paper is devoted to the detailed formulation of the boundary-value
problem in the hodograph plane and to a discussion of the final results.
Noteworthy differences between the numerical procedures used in the
present work and those already described in reference 3 are treated in
appendices at the end of the report.

NOTATION
Primary Symbols
ay critical speed (i.e., speed at which the speed of flow and
the speed of sound are equal)

b numerical coefficient
(See equations (39) and (40).)

c + airfoil chord
¢y 1ift coefficient ( Lift per unit SPan)
' ; ' N 9oC
Cm moment coefficient for moments taken about leadlng
edge moment per unit span ’
q,c2
: : P-p ,
Cp pressure coefficient (———9-> ’
0
Iy integral defined by equation (45)
ko numerical constant
(See equation (10).)
M Mach number
il slope of segment of Mach line in characteristics net

P - static pressure
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. local lifting pressure .(i.e. s difference between static

pressures on upper and lower surfaces)
dynamlc pressure
airfoil thickness
speed of flow -
Cartesian coordinates

generalized Cartesian coofdinates
~ (See equations (43).)

chondwise position‘of center of 1lift

‘slope of curve of lift coefficient versus true angle of

attack evaluated at zero angle

~ slope of curve of moment coeffic1ent versus true angle of

attack evaluated at zero angle

normalized angle of attack also denotes true angle of
de
attack when used in derivatives such as_:if-, ete.

absolute value of 1 at left-hand limit of lattice
ratio of specific heats (1.4 for air)
basic lattice interval

function of 7 and 6
(See equation (A6). )

normalized speed of flow _
(See equation (1a) and page 10.)

- special values of

(See sketch (m) on page 46.)

Anormalized inclination of- flow, 0 also denotes true inclina—

tion of flow in equation (1b)
(See equation (1b) and page 10. )

normallzed half angle of wedge

transonic similarity parameter
(See equatlon (13).)
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o fluid density
R stream function
5¥'y,  incremental values of stream function

(See equations (A9) and (A1l1).)
Subscripts
a,b,d: points in characteristics net

(See page page k43.)

A,B componenfs of total stream function
(See equation (39).)

o] conditions in free stream

8 singular solution
(See equations (A6) and (AT) )

0,1,2, value at a prescribed 1att;ce pqint

ete
* conditions at critical speed
Supersecripts
(—)' quantities determined at zero angle of attack

() derivative with respect to normalized . angle of attack
evaluated at zero angle
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BOUNDARY~VALUE PROBLEM IN HODOGRAPH PLANE

Description of Flow Field =

Sketch (a) is a drawing of the idealiiéd, inviscid flow which

Shock wave
————=——— Slrearm/ine
—— — — Sonic line
———————— Expansion } Mach
———————_.Compression) [lines

Sketch (a)

may be ekpected about a wedge profile when the angle of attack is
sufficiently less than the semiapex angle of the wedge. Sketch (b)

/

Sketch (b)
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shows the corresponding hodograph representation of the flow over the
front wedge, which is the region of prime theoretical concern. Except
for the substitution of the detached bow wave in place of the infinite
free stream, these representations follow the lines assumed by Guderley
and Yoshihara in reference 9. The corresponding drawings for zero angle
of attack, which are fundamental to the present case, have been described
in detail in references 2 and 3. ' o

In the present example, the path of the central streamline in the
physical and hodograph planes is briefly as follows: The streamline
leaves the bow wave in the physical plane (or the shock polar in the
hodograph plane) at point A. It then proceeds with decreasing subsonic
speed to a stagnation point O on the underside of the profile. At O
the streamline branches. The lower branch runs downstream along the
lower surface of the profile with fixed inclination but increasing
speed. The sonic speed is reached at the shoulder L, where the speed
then increases discontinuously in accord with the Prandtl-Meyer rela-
tions. The shoulder itself maps in the hodograph onto the upgoing
characteristic IM. The upper branch of the central streamline proceeds
from O upstream along the surface of the profile. The inclination here
is again fixed by that of the surface, and the speed increases to the
sonic value at the leading edge J. At this point the flow is charac-
terized by another Prandtl-Meyer expansion to supersonic speed.

The flow configuration which should be assumed on the upper surface
near the leading edge is open to conjecture. Since the geometrically
available angle of turn will, for any thin airfoil, be greater than the
l30° permissible for expansion to a vacuum, a region of separation is
to be expected. If the angle of attack is not too great, this region
will probably be closed, with the central streamline reattaching to the
upper surface a small distance behind the leading edge. This reattach-
ment will be followed by a compression of the flow through a system of
shock waves whose arrangement is sketched only formally in the physical
plane (and not at all in the hodograph plane, where the correct repre-
sentation would probably lie on several sheets). The effects of the
tlow near the leading edge will be mentioned later, but the exact )
brocess will remain undefined. ~ Whatever the details, the speed on the
upper surface will return to a subsonic value at some point K just
downstream of a terminating, normal shock wave. From K the central
streamline continues at fixed inclination downstream along the upper
surface, the speed increasing once more to the sonic value at the
shoulder B. At this point another expansion takes place, similar to
that which occurs at the corresponding point on' the lower surface. In
this case the shoulder is represented in the hodograph by the down-
going characteristic BG. ' : ‘

The supersonic expansion fan from the shoulder at B (and similarly-
- at L) is discussed in detail in references 2 and 3. Suffice it here to
say that the supersonic flow field, of which the expansion»fan is the
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initial part, is separated into two regions by the Mach line GE, which
runs from the shoulder to the sonic point on the bow wave. (This line
was termed the "separating” Mach line in reference 2.) The supersonic
flow in the region upstream of the Mach line GE is interdependent with
the subsonic field between the bow wave and sonic line. " To obtain a
solution for the front wedge, a problem in transonic flow must there-
fore be solved for the subsonic field and the interdependent portion of
the supersonic expansion fan. Conditions in the supersonic flow down-
stream of the Mach line GE have no influence upon the subsonic field.
The continuation of the flow beyond GE can be accomplished by purely ,
supersonic methods once the solution of the transonic problem is known.

Aside from the obvious lack of symmetry in the present case, the
main difference between the flow here and that previously studied at
zero angle of attack is the existence in the present problem of the
' localized supersonic region in the vicinity of the nose. As pointed
out, conditions in this region are difficult to formulate. The problem
has been considered by Guderley and Yoshihara (reference 9) in the
course of their work at Mach number 1. They find that, if the nose
region is disregarded in the hodograph and the boundary condition
along KB is fulfilled all the way in to 0, then the influence on the
1ift of the resulting fictitious flow at the nose is of somewhat higher
than the second order in the angle of attack. This suggests that the
effects of the real flow at the nose may be neglected in a first-order
‘analysis such as the present.. In the work which follows, as in the
calculations of Guderley and Yoshihara, the supersonic region at the
leading edge will therefore be disregarded.

Formulation of Boundary-Value Problem

As in reference 3, the analysis is based on the equations of the
transonic small-disturbance theory with the stream function V¥ as the
dependent variable. If the effects of the flow at the nose are ignOred,
the problem of the wedge at angle of attack a is then readily formu~
lated as a boundary-value problem in the hodograph plane. To solve this
problem for vanishingly small ¢, it will be assumed that the solution_ V.
at angle of attack can be expressed as the sum of the basic solution V¥ '
previously obtained at zero angle plus a perturbation term ay', where s
is a function which does not itself involve a. . By consideration of the -~
difference between the boundary-value problems for ¥ and V¥, a problem )
for the perturbation function V' can be formulated. The boundaries for
this problem turn out to be the same as those for the problem at zero:
angle, and the boundary values themselves appear in terms of ¥. The
details of these matters will now be given. The reader who is interested
only in the results can turn directly to the section Chordwise Distribu~

iion of Lift on page 28.
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Basic equations.- The basic equations will be taken in the form

given in reference 3, that is, in terms of small dlsturbances from the -
critical speed ay?2 The 1ndependent variables are the normalized speed n

" and the normallzed inclination @ as deflned by the relatlons

V/a R
Y= ———— (1a)
o/a*"l
) RS
e ——— -————-——-575 ‘ .
7+1 (Vo/ay - 1) _ :
where
v local speed of flow )

6 local inclination of flow relative to direction of free stream

.Vo free-stream speed

critical speed (i.e. s speed at which the speed of flow and the
speed of sound are equal) A

7 ratio of specific heats
Use of these variables is equivalent to 1ntroduc1ng the rules for tran-
sonic similarity. In terms of the foregoing hodograph variables, the

differential equation for the stream function V¥ as given by the tran—
sonic small-disturbance theory is

¥im - 2 vy = | @

2As discussed in several recent papers (e.g., references 10 and ll), the

theory can also be formulated in terms of disturbances from the free~
stream speed V,. This latter, less restrictive formulation reveals
clearly the relationship which exists between the transonic small-
disturbance theory and the familiar linear theory of subsonic or super-
sonic flow. As shown by Spreiter (see page 9 of reference ll), an -ayx
analysis will yield values of the pressure coefficient identical to
those of a V, analysis provided the pressure coefficient and similar-
ity parameter in the former case are taken as in equations (L4) and (13)
below. If this procedure is followed, the results of the -ay, analysis
may even be expected to tend toward those of linear theory as the free-
stream Mach number increases or decreases from 1. (An analytical
example of just this behavior has been given by Bryson in appendix A
of reference 7.) It appears, therefore, that the a, formulation,
when suitably used, gives results of wider theoretical validity than
‘would be ant101pated on the basis of its own rather restrictive under-
lying assumptlon.
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This is essentially the linear differential equatlon flrst studied by
Tricomi (referemce 12). It is elliptic for T <O (subsonic speeds)
~and hyperbolic for %>0 (supersonlc speeds) : -

The transformation from the hodograph to the physical plane is
governed by the differential relatlons :

. _ 1/2 - ' '

dy

(vndn + ’If~d9) =L av - (3b)
p* % p* ¥* ;o . . -

where x—x(n,‘) and y=y(%,8) are physical coordinates (horlzonﬁal and
vertical, respectlvely) corresponding to a given velocity %,6. The -
symbol Py denotes the fluid density at the critical speed ay,. Within
the approx1mat10n of the transonic small-disturbance theory, the pressure
coefficient Cp= (p-po)/q0 can be calculated from the relation

: V-Vq
CP = “2 -

- 2(Vpfa, -V)(F-1) (8

8 %

The local Mach number is related to the speed of flow by the eqnation

> ‘
M-1_ VvV _ 1 ' ‘ ‘ ' (5)
; ')'+l a* ’

For 51mp11city of notatlon, the tilde w1ll be omitted from the .
symbols 7 and 8 in the remainder. of the development. It is to be
understood, unless stated otherwise, that the quantities 0 and 6 are
themselves the normalized quantities deflned by equatlons (1).

Problem at zero angle of attack.— When the angle of attack is zero,
the localized region of supersonic flow at the leading edge disappears
from sketch (a), and the flow field becomes symmetrical about the chord
line. The corresponding boundary-value problem in the N6 plane has
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been set forth in reference 3. It is restated in sketch (c), where both
the upper and lower halves of the flow field are now included. 1In this
representation, the surfaces of the wedge appear as the semi-infinite
horizontal lines OB and OL, and the subsonic portion of the shock polar
appears as the curve NAE.

o . A )
‘§=cwnf/;g@g@¢bb
0= — Z G
#(9,8,) =0 : 19
’_.
04 !
a4 (f’;';,{,de.-o—\
4’, 7
0 = -7 '_
g0 )
%(0.4) -
WO&/ 4, /__/ 2727779 —
~ .
- glp-6,)=0 1%
0 ‘ 0_ L —’;V,
‘§=camMJ§%@Zﬂ%/d7
( Sketch (c)

. If the stream function fow zero angle of attack is denoted by
V= W(n,e), the differential equation to be satisfied here is given by
equation (2) as

g ,."""nnfg?""ee ° _(6)._

The requirement that the flow shall be tangent to the surfaces of the
wedge prov1des the boundary conditlons v

¥(n,%6y) = 0  for <0 (1)
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where 6y denotes the normalized half-angle at the leading edge. The »
stagnation point at the leading edge 1s represented in the,present‘
theory by the condition that : oo : o

¥—>0  for n—>-w, -ewgegew : (8)

Along the shock polar NAE, the relations for en oblique shock vave
require that : o

i _ . l+7T] . _ .
Y ¥ 3 Vi Ve = 0 - (9)

for

0 =4 (1-n) ¥14q, -1<n<0

Along the sonic line, boundary conditions are'prescribed which represent
the influence exerted on the subsonic field by the interdependent portion
of the supersonic expansion fans. On the basis of the procedures given
in reference 3, this influence can be represented completely by the
requirement that - ‘

- 6 V‘T.’e(O:Gl)v | o

where the ui)per é‘igns apply for l§ 6< 6y and the lower signs
for - -6w<@<-1. The constant k, which appears here is given by

__ 2*3«x
3*/° 1°(1/3)

= 0.3&29

where T'(1/3) is the gamma function of the argument 1/3. The use of
the relations (10) as boundary conditions’ along the sonic line reduces =
the transonic problem of the flow over the front wedge to a purely
elliptic problem in.the hodograph plane.

Tn addition to the foregoing corfitions, a further condition is
necessary to assure that the solution for: Vv will give the proper scale
when transformed to the physical plane. This is furnished, for example,
by the following expression for the half-chord of the profile, found by
integrating equation (3a) over either OB.or OL: o




,13

NACA TN 2832

2
p*a'*

(7+i) (V, Jag-1) 172 O | | |
§= [ 20 - J _[T‘*e(“’iev) dn . (31)

CIf the chord of the profile is given, this condition, together with the
previous conditions (7) through (10), is sufficient to determine a unique

solution to the problem.
It is obvious from the nature of the boundary-value problem (and

also from considerations of symmetry ‘in the physical plane) that the
The problem

vsolutlon for W mist be antisymmetric with respect to 8.
can be simplified, therefore, by discarding the lower half of the hodo-

graph and replacing it by the condition

(12)

¥(n,0) =0 forng-1

The resulting problem is readily solved with numerical methods by
, for example,

assuming ,an arbitrary value of W at some point (as
point EL solving for v in the upper half of the hodograph subject to

fthe conditions (T7), (8), (9), (10), and (12), and then adgusting the

lsolution to satisfy condition (11).
’ .
It is apparent from the boundary conditions that the solution of

|
the foregoing problem will depend on the value of the parameter Ows

|
which defines the position of the upper and lower boundaries in the
This parameter is related to the more famlllar transonic

hodograph.
by the relation

! s1milarity parameter &
‘ My2 -1 _ pl/e T (13)
| [<7+1)(t/c)l e eBre -

where t/c is the thickness ratio of the complete double-wedge proflle.
In references 2 and 3 the solution of the foregoing problem has been . -

) carried out for four values of 6Oy.
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Problem at angle of attack.- If the supersonic‘region at the ;
leading edge is ignored, the boundary-value problem for the wedge at
angle of attack appears in the 1,8 plane as shown in sketch (d).

5 = const ﬁw(%ﬂ aa}d7 ' _A
R e e SRS,
0 = Vo yaal=0 , ] — 2 b2
;&/Q:Za}ufz% (Z;(Z;%%d& o _\"
a

for P—>-c0

. " g .
%(Q8a2)+4, /?/%f;fjda 0—/

. 25 = cons/ ﬁ,/{, /7, -a; a}d7

Sketch (d)

The primary difference between this and the previous sketch is that the
lines OB and OL, which represent the surfaces of the wedge, have each
been displaced downward by an amount a, where o is the angle of

~ attack normalized in the same manner as the other angles of 1ncllnation
(cf. equation (1b)).2 ‘ ' :

8Tn reference 9, Guderley and Yoshihara find 1t convenient to obtain the
‘angle of attack by holding the profile fixed and changing the inclina-
tion of the free stream. This procedure, if applied in the present
case, would require the eventual calculation of the second derivatives
of V¥ on the shock polar. The present procedure, which holds the free
stream fixed and changes the attitude of the profile, requires the cal-
culation of only a first derivative of w at the surface of the wedge.
Since the accuracy of numerical differentiation decreases with increas-
ing order of the derivative, the present approach is to be preferred in
a -numerical analysis.
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The .stream functlon at angle of attack will be denoted here’
by =y(n,0;a), the latter notation being used to indicate the depend -
‘ence of V¥ wupon the parameter a. The function V¥ must satisfy the
differential equation (2), which is now written

The boundary conditions at the surface of the wedge now require thet

¥(n,+6,-a;a) = 0 for ngO' (15)
while the condition at the leading edge becomes
y—=>0  for N—>-wo, -0y-a<0<Oy-a (16)

The shock polar NAE is unaltered from the previous problem, and the
condition on this boundary has the same form as before. The conditions
along the segments BE and LN of the sonic line are now '

6 V5 (0,65 3a)
¥(0,65a) + k f AN ag; =0 T
foy-a [+(6,-6)1%/°

where the lower limit of the integral has been changed in accord with ‘
the displacement of the points B and L. The upper signs in equation (17)
now apply for 1£6<6y-a and the lower signs for -Oy-a<6<- 1. An -
expression for the half-chord of the profile can be found again by inte-
gratlng equation (3a) over the line OB or OL, which gives:

- 1)(V _[a,-1) M2 | N
§= pfa*[: (7+ )(2 /a ‘ )J fn,l, (T]: ew-a,a) dn (18)

If the chord of the airf01l is specified - say the same as at zero angle
of attack - then the foregoing conditions are sufficient to determine a

. solution. No simplification based on symmetry cons1derations is poss1ble
in the bresent case. :

‘ Perturbation problem.- The problem of the preceding section conceiv-
ably could be solved by numerical methods - though with great labor - for .
arbitrary values of «. Efforts in this direction would hardly be Justi-
fied, however, in view of the fundamental omission of the localized '
supersonic flow at the leading edge. It is more reasonable to examine
the problem for vanishingly small a, where this omission is valid and
where there is hope that the amount of labor ‘might be reduced.




16 B o : NACA TN 2832

To proceed along these,lines, it is assumed that W(n,e;a) may be
expanded in a power series of the form S R

¥(n,650) = ¥(n,830) + & ¥ (n,0650) + 0(c)

where, for present purposes, only terms to order a need be retained.

The first term on the right represents the solution at. a = 0O and is

thus identical with the function ¥(n,8) previously introduced. -The
'second term will be abbreviated by means of the notation ¥'(n,8)=¥,(n,050)
If terms of O(aa),are discarded, the expression for ¥ can then

be written v
¥(n,85a) = ¥(n,0) ra ¥' (n,6) ' (19)

By comparison of‘the previous boundary-value problems for ¥ and ¥, &
problem for the perturbation function ¥' will now be formulated.

The differential equation for V' follows at once from the diffef- '
ential equations (6) and (14) and the substitution (19). It is obviously
of the same form as the previous equations, that is, '

-

Vign - 21 ¥Wgg=0 (20

The‘boundary'conditions appropriate to the surface of the wedgé are
. established as follows: The boundary condition (15) for V¥ is first
rewritten, with the aid of the substitution (19), in the form ’

'

ﬁ(ﬂ;iew;q) + a W'(ﬂ;iewfa) =0 ' : ] (21)

By expanding in Taylor's series about the lines 6 = iew, the functions. N
¥ and ¥' can be written L

¥(11, 20, -a) ¥(n,*6w) - a\ie(n,ieﬁ) + 0(a®) ) (222)

V(1 , £0y-a) .‘l"(n:\few) - ““"e(ﬂ,‘-“ew) + 0(a®) ce (22pb)

If these expansions are substituted into equation (21) and  ﬁ(n,i9W)»set
equal to zero in accord with the boundary condition (7),'one obtains
finally for vanishingly small -« . ' o :

Vin,200) = Fg(nte)  forngo  (23)
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This is the boundary condition for V' appropriate to the surface of
the profile. It will be noted that the condition is applied in the
hodograph at the original, undeflected location of the surface

(i.e., - 6=%9,). The condition depends for its application on a knowledge
of the basic solution V.

. The boundary condition for V' at the leading edge follows
directly from the conditions (8) and (16). It is the same as the corre-
sponding condition for *Jr, that is, :

y—>0 for n—> -w, -6y,<6<Hy . - (2k)

As was indicated, the functions ¥ and ¥ both satisfy the same
linear, homogeneous boundary condition on the shock polar. It follows P
as in the case of the differential equation, that the condition for V!
on the polar is again the same, that is,

L LT . N '
vy F 3+5n~/_ Ln ¥ =0 | B (25)

for

8 = £(1-1)/ 147, -1<N<0

The treatment of the boundary condition along the sonic line is
complicated by the fact that the parameter o appears in the condi~
tion (17) as a term in the lower limit of the integral. For simplicity,
the details will be confined here to the upper segment BE of the sonic
line. For this segment, condition (17) becomes, after substltutlon
from equation (19), :

- & ¥,(0,0 6 W'(O 6 )
¥,(0,6) + ai;'n(o,e) + ko[ ,"_’69_(___’__21_;; + ak f AN l y =0
Oy=a (61-6) . By-a (61 - 9)

(26)

applicable for 1<6<6y-a. To simplify this equation, the first
integral is rewritten ‘ ‘ ‘

o Fpl0,8) f9 To0,0) few-“ ¥40,61)
0 ARG Y e 7 S

= de 2
A (61-6) 2/3 2/3 1 (27)
=

) 6, (61-6) * o, . (61-6)"
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It can be shown from Guderley s analysis of flow at a convex corner
(reference 13) that, for vanishingly small values of (64=0), the
variation of ¥ along the sonic line must be of the form

¥(0,6) = € (ew—e)‘”8 . o (28)

where C 1is a constant for any given value of Oy. Differentiating .
this relatlon, one obtains : :

¥,(0,8,) ~ (6y-6,)""°

Substitution of this result into the second integral of equation (27)
yields the fact that this integral must be proportional to a4/3  The
first integral in equatlon (26) can thus be wrltten

e ¥y(0,6,) : e\l'r'(oe)» | o o
f 22 a8y =f —S > a6, + 0(at/3) - (29)
Y T Y S

. W W

The second integral of equetion (26) can be treated similarly by first
rewriting it as

. f9 ¥5(0,6;) 15 fe ¥'5(0,6;) i f)w'a_ 1If"e(o,al) iy )
e m—————— = g 1 - ‘ T 1 .
Oyt (91_9)2/3 1 (9 9)2/3 _ (91—'6)2/3

To deduce the variation of ¥' for vanishingly small (6y=8), it is
first noted that a result similar to equation (28) must also hold for
the variation of W relative to the displaced location of the shoulder,
that is, »

¥(0,6) = ¢ (6uy-00)*®

" The quantlty C = C(a) is a differentiable function of «a _which reduces
to O when a = 0. Since ‘a will eventually be made less than any
assignable value of (QW—G), this expression may be expanded in the form

¥(0,6) = C (ew-e')‘*/a[ b o(o?)] o - (31)
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Now it follows from the definition of V' that

Wt (0,9) = a]i-;no W(O 6) - W(O 9)

e

Substitution from equations (28) and (31) thus gives for the variation
of ¥' in the vicinity of the shoulder :

¥1(0,6) = Lim [EL:;S (64-0)*/° - % C (6y-0)""2+ o(;)}v-

(6,-6)2/2 (6,-6)/®

a—>0
or
' : 4/3 o o
¥ (0,0) = C' (6,-0) /8. .;t C (oy-0)'"® (32)
where C'=Cq(0). This means that for vanishingly small (6y~0)
-2/3
¥ (0,6,) ~ (6y-6,)"%
On the basis of this result equation (30) can be written
& - ¥'9(0,6,) Oy'g(0,60) N
J/\ A A de, =\/n 8 o, -+ 0(al/3) - (33)

QW—CL

If equations (29) and (33) are substituted 1nto equatlon (26) and the
boundary condition (10) is taken into account one then obtains for
vanishlngly small o

¥1,(0,0,) |
W”ﬁo,9)+-k d/ﬁ'—g—*—:gzg dg; =0 N B (34)

B+ (9 "9)

~where 1£6<6y. The boundary condition for W'b along the upper segment
of the sonic line is thus the same as the condition for V. The same
result can be shown to hold along the lower segment.

It remains to impose the condition that the chord of the airfoil
must remain unaltered during change in angle of attack. -To express this
condition in terms of . ¥', equation (19) is first substituted into
equation (18) to obtain

- [(ﬂl)(?/a*—lqléf [We(n,' éw;a) +a¥ <m*9w-°ﬁ>] o <35)‘

<
27 0 ay



20 _ | ' ' NACA TN 2832

As in the treatment of theiboundary conditions along the uppéf and
lower boundaries, Taylor's expansion gives

To(n,20y-a) = Vg(n,6y)-a Fag(n,204) + 0(a®) (36a)

Vi (n, #y-a) = ¥p(n,260y) - a Vg (n,28y) + 0(a?) (36D)
It can_be inferred directly from the boundary-value problem for ﬁ

that W (n,_e ) = 0, so that the term involving this quantity may be
dropped grom equation (36a). Substitution of equations (36) into

equation (35) and application of the previous expression (11) leads,
for vanishingly small a«, to the condltlon that ;

. o .
f N ¥y(n,26y) dn = 0 | (37)
S B - | ‘,” ‘
The boundary conditions (23), (2h), (25), (34), and (37) are sufflclent
to determine the solution for V' in the hodograph _

As with W, the boundary-value problem for V' can be simplified
from considerations of symmetry. Since ¥ is antisymmetric with
respect to 6, the nonhomogeneous boundary condition (23) which is-
imposed on W' along the ‘upper and lower boundaries must be symmetric
in this variable. The remaining conditions, which are all homogeneous,
are also symmetrié. It follows that V¥' -itself must be a symmetric’
function of 6.% The problem'can therefore be simplified by again
eliminating the lower half of the hodograph and substltutlng in this
case the condition that

V(n,0) =0 for ng- 1 | (38)

4This result can also be argued directly from considerations in the
physical plane. It is necessary to make two observations as follows:
(1) Since the profile itself is symmetric about the chord line, the
flow field at a negative angle of attack must be the inverted image
of the flow field at an equal positive angle. (2) To be consistent -
with the basic perturbation assumption, it must be presumed that all
changes in the flow field are smooth functions of angle of attack
at a = 0. These statements taken together imply that the vertical
distance between any two points of equal n and correspondlng posi=~
tive and negative @ 1is, to a first order, unaffected by angle of
attack. It follows that, for sufficiently small a, the increments
in W and ¥V between the two points are equal and hence, on the basis
of equation (19), that the value of V' at the two points is the same.
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- The problem which is finally to be solved is thus as summarized in
The_boundaries for this problem are identical with those
used to obtain V. The boundary conditions are also identical insofar
as the shock polar and sonic line are concerned.
between the two problems are in the conditions 1mposed along the bound=-
As was the case with W the solution here must be a

. The only differences

Sketch (e)

B

Y
N

Because of the nature of the 1ntegra1 condition along the upper

l boundary OB a direct solution for V' is not feasible by numerical

"(39)

methods. To obtain a solutlon, therefore, the problem is broken down
. - into two subs1d1ary problems by means of the substitutlon ‘
¥ o= w'A‘+ b¥'p
. ‘where b is a constant whose value is to be’ determined. Boundary-value

problems for ¥'y and vﬁB are’ then defined as shown in sketch (f).

0=

PN
W
<

§'=0

0 =

FhmMﬁn/er{

Sketch (f)

Problem ﬂu'gy
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In both problems the integral condition along the upper boundary OB is
ignored for the time being, and an arbitrary condition is introduced
instead at the point E. In the problem for =¢'A, ohly the nonhomoge-
neous condition (23) is imposed at the upper boundary, and the condition
at E is the homogeneous one that. V', = O. In. the problem for V's,

the homogeneous condition V¥'z = O . 1s imposed along OB, and the condi-
‘tion at E is that V¥'p has an arbitrary value W'BE £ 0. The conditions
at the remaining boundaries are the same as in sketch (e) and are there-
. fore not repeated here. It is apparent that a superposition of V¥'p

and V' Will constitute a solution of the original problem provided the
value of b 1s adjusted so that the integral ‘condition (37) is satisfied
on the upper boundary. The necessary equation for b 1s found by sub-
stituting the egpression (39) into,condition'(37) and is

f”] ’ilf’A'e(leew) dn
b= = _ : ' R :
- po (ko)
f n \II'BQ(T]:GW) dn

Relations for quantities in physical plane.- To complete the funda-
mental analysis, relations must be established between ¥* and the
relevant quantities in .the physical plane. Let X = %(n,0) and ¥ = F(n,06)
denote the coordinates at which a given velocity 10,0 is found in the
physical plane when the profile is at zero angle of attack. As shown in
reference 3 (pp. 29-31), the transformation equations (3), when applied
to the case of zero angle of attack (and written in the present notation),
can be put in the dimensionless form ,

- . ig, = L (en¥,an + Vpdo o (bla
R d<:q> Ay {‘ﬁ‘? nv’ n; ) . : :,( )

W

L =\ - T : . S ~1/8 - L ’
1/8 (y) (26672 5 o . Goae) - 28w an
1) (t Sal =) = E—(Wpa ag) = ~—¥L -4 41
[(r+1)( /eN </ it O n + ¥529) v (k1p)
where f% repfesehts ﬂhe integral

fw,*»fo"ife(n?@w),“dn S
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By taking the origin of the physical coordinates at thf %eading edge and
introducing the notation X = x/c and ¥ = [(7+1)(t/c)] / (#/c), equa-
tions (41) can be integrated to give ‘

20,0 = gt [ Cnfan + Fa0) (33)
| | | o |
1/3 o v
- 20 - :
¥(n,0) = f—éﬁ)—— ¥ ‘ - (43p)
. W .

The integration in equation (43a) is performed in the hodograph over any
curve C which begins at N = -o and ends at the point 1,9. The _
generalized coordinates X and Y at which the same velocity 0,0 is to
be found when the airfoil is at angle of attack are given correspondingly
by . ' o

. X(n,e,g) = T {(Eqwedn + ‘Jrnde) - (4ka)
. » 1/3‘ i ' .
20,
Y(n,8;a) = (2) ¥ (4kp)

L1,

The integration in equation (Lka) is considered to be taken over the
same curve C as before.® The integral I, is now given by

o - ‘
Iy = f MVg(n,64-a) dn . (45)

=00

It can be shown from equations (19), (36), and (37) that for vanishingly
small « o o ' . ‘ .

Iy = Iy \ | | (46)

‘ Equations (44) can now be specialized in the light of the basic
" perturbation assumption. This assumption implies at. once that the coor-
dinates X and Y in the physical plane must be expressible in the form

5If C lies slightly outside the domain in which ¥ 1is defined - as
will be the case, for example, when the integration is taken over the :
upper surface of the wedge in its undisplaced position - ¥ is to be

- thought of as being continued analytically outside the boundary. )
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x(n,050) = E(n,0) 4 aX(,0)  (¥7a)

.?(n,e) Fo (n,0) . -~ (47p)

Y(n,0;3a)

where X'(n,6) =Xy(n,0;0) and Y'(n,6) =Yq(n,6;0). If expressions (19)
and (U7) are substituted into equations (4h$ and equations (43) and (L46)
are taken into account the following relations are flnally obtained

for X' and Y' in terms of y':

x(n,0) = = [ (eavpan + va0) " (%82)
(e B o
1 (1,0) = —— | - (48p)

The foregoing equations (48) give the initial rate of movement with
angle of attack of a point of fixed velocity 1,8. One requires for
practical application, however, the rate of change of 7 and 6 at a
point of fixed location X, Y. Equations relating the two sets of deriv-
atives can be obtained as follows: If 1 and 6 are regarded in the
physical plane as-functions of X,"Y, and . a ~ that is, 1 = (X, ¥; a)
and 6 = 6(X, Y; a) - then the corresponding total differentials are

dn

MgdX + nydY + ﬁada ' ,(493)

de

OydX + 6ydY + 6gda o (49Db)

Consistent with the basic perturbatlon assumption, 7 and 9 can be
written :

L) = G + e v (5D (508)
0(X,Y,a) = 8(X,¥) + a 0" (%,7) " (50b)

where 1 and & represent the conditions at a glven p01nt X, ¥ at zero
angle of attack and 7' and 6' are defined by n'(X, ¥)= na(X 3 0),

01 (X, ¥)=04(X, ¥; 0). In view of equations (50), equations (ﬁ9) can
be written for vanlshlngly small a R . .

dn axX + iy Y+n'doc ; o e (51a)

Tlx

]

a6 = Byax + éYdY PTE . (51b)
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Similarly, from equatlons (47), one can write for the differentials
of X and Y as functions of n,6, and o

)’(ndn + Xp30 + X'da

ax =
ay = fndn + Todo + Y'da
from yhich ‘ | |
Rodn + Foao = ®-Xd . (52a)
Fodn + Todo = Y - Y'aa  (52p)

Solution of equations (52) for dn and A6 and comparison of the results
with the alternative expressions (51) gives finally for n' and 6!

¥.x' - X1 o o
' o= - :ﬁ}f———_ﬁ:‘- | (532)
oo - %ol '

, CYX' - Xyt o
or = :3:__-_;1-— | (53b)

These equations can be put in more dlrectly useful form by evaluatlng
the derivatives of X and ¥ from equations (43) and substituting for
Xt and Y! from equations (h8) ‘There results finally

ﬂ'(i’Y) = "__'L:— [‘T'ef(g,”""ed” + “"nde) - ‘T’n“"] ~ (Sha)
¥, ¥, % - e e

e'(X,¥) = w [ f(En\lfedn Y d9) -en\V \lr'] (54p)
21 . e

By means of these equatlons the initial rate of change of 1 and 6 at’
some fixed point in the physical plane can be calculated corresponding
to any chosen location in the hodograph. The coordinates at which these
derivatives apply are found from the. solution at zero angle of attack
by means of equations (43). -
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The foregolng equatlons are con51derably simplified when applled at
the surface of a wedge profile. THere the boundary condition is that W
is constant on a line of constant 6 (cf. equation (7)), with the result
_that Wn Equatlon (5Ha), for example, can thus be written as

simply

n' (X,0) =————-————f vy n,+9w) dn (55)
‘ TN’Q(“) 6y

where the upper signs pertain to the upper surface and the lower signs
to the lower surface. The corresponding rate of change of pressure
coefficient is found by dlfferentlatlng equation (€Y with respect to
angle of attack. If o is used now to denote the true angle of attack -
(related to the previously used normalized angle of attack by an equa-
tion like (1b)), such dlfferentlatlon then gives .

1 /2

dCp R
- |
( , 7+1) N

(Vb/a 1)

Here n' 1is still the derlvatlve with respect to the normalized angle
as given by equations (5ka) or (55) - Wlth the a1d of equatlons (5) and
(13), this result can be rewritten

[(7+l)(t/c)]1/3< da) - - 2(e0)° C6)

It can be seen from equation (55) and the symmetry properties of ¥
and ¥ that 7' must be of equal magnitude but opposite sign on the
upper and lower surfaces of the profile. If the local 1lift coefficient
1is represented by Ap/qo (Plowerv' Pupper)/qo, it then follows from
equation (56) that .

d(Ap/a,)

[(7+l")(t/c)]‘l/3[ — J = k(2ey) /n (X,+o) S 1)

=0

where the notation 1! (X +O) indidates that the value is to be taken on
the upper surface of the profile. Substitutlon from equation (55) gives
finally

A

-f[<7+1)<t/c)11.’3[d(ip/ W) 5572-‘(91’—’—7 f W (1,00) ¢ EICD
& a=0 ¥y n,ew -0

By means of this equation, the initial rate of growth of 1ift at any
chordwise station can be obtained. Since ¥ and ¥' are both functions
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of the parameter 0y, the generalized quantity which appears on the left-
“hand side of equation (57) is also a function of this parameter. These
results are in conformity with the rules for transonic similarity (see,
for example, reference 11).

METHOD OF SOLUTION

As in the previous calculations of E, the boundary-value problems
- for V¥'y and ¥'g can be solved through the use of finite-difference
equations and relaxation techniques. A detailed description of the
general method has been given in reference 3 and need not be repeated
here. Most of the necessary finite-difference equations - notably the
tedious ones along the shock polar and sonic line - can be taken over
directly from the previous work. The only equations which need be
altered are those directly influenced by the change in boundary condi-
tions on the upper boundary and on the horizontal axis. The only real
difficulty from this source is encountered in the solution for ¥y in
the vieinity of the shoulder (point B in sketch (f)). At the shoulder
itself, the boundary conditions require a singularity in the first
derivatives of V¥',, which means that any purely numerical treatment ‘
would be of doubtful validity in the vicinity of this point. This d4if-
ficulty is overcome by subtracting out an analytical solution of the
broper singular form and then working locally with the difference
between this solution and the desired unknown. The singular solution
1s obtained from the general results of Guderley (reference 13) and is
expressed in terms of hypergeometric functions. The details of this

_ and other matters regarding the numerical calculations for the front
half of the profile are given in appendix A.

With the solution known for the front half of .the profile, the
calculation of the 1lift on the rear half is a simple matter. The com-~
putations are carried out in the physical plane and are based on the
characteristics net previously constructed for the flow over the rear
-wedge at zero angle of attack (see, for example, fig. 4 of. reference 3).
Starting from the known solution for V', one first employs equations (L8)
to compute the initial rate.of movement of the points at which the Mach
lines of the basic characteristics net meet the sonic line. 'Using these
results and the known slope of the segments of the basic net, one then
proceeds stepwise along consecutive downgoing Mach lines,‘calculating
the initial rate of movement of successive intersection proints on each
line. By application of the proper boundary conditions at the surface
of the wedge, the value of 7' .at the surface is finally determined, and
from this the initial distribution of 1ift is calculated. The details
of the procedure are given in appendix B. - : '
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RESULTS AND DISCUSSION

Calculations of the 1ift have been carried out, following the
methods Jjust outlined, for the same values of 6y used in the work
at zero 1ift, namely, 1.3, 1.6, 2.4, and 4.2. These values correspond
respectively (see equation (13)), to values of the similarity param-
eter &, ‘of 1.058, 0.921, 0.703, and 0.48k.

To illustrate the results for the front wedge in the hodograph,
figures 1 to 3 have been prepared showing the variation of W' A A B
and ¥' for 6y = 1.6.° The results for V¥'gp (fig. 1) are only slightly .
different from those prev1ously shown for fB in figure 3 of reference 3.
As before, a rapid (but regular) variation is apparent in the dependent
variable in the vicinity of the point 1 =0, 6 = 1. The results for ¥
(fig. 2) show a rapid variation near the point, n =0, 6 =60y. This is
a consequence of the previously mentioned singularity in the first
derivatives of ¥', at that point. The values of V' (fig. 3) are
found in the present case from the equation ¥' = ¥', - 0.5348 V¥'g
(cf. equation (39)). They exhibit the same behav1or as does V'p
the vicinity of the singular point but differ markedly in other parts of
the field. For reference, the numerical values from which figures 1 and 2
were plotted are given in tabular form at the end of the report. ‘

The complete results for the 1lift of the profile are given in .
Pigures L through T. These results will be discussed in the follow1ng
paragraphs. :

Chordwise Distribution of Lift

Flgure y is a plot of the calculated 1lift dlstrlbutlon, in tran-
sonic similarity form, for the four values of &, considered in the
present work. Also shown are the results for §,= 0 (Mg = 1) given by
Guderley and Yoshihara in reference 9. It is convenient for purposes
of discussion to think of a similarity plot, such as that of figure 4,
as pertaining to fixed values of - t/c and y. ‘From this standpoint, an
increase from zero in the similarity parameter £, 1is equivalent to an
increase from 1 in the free-stream Mach number M,. For simplicity,
this point of view will sometlmes be adopted in the descrlptlons that
follow. ' : , . :

8ror the calculation of V'p in this example, use was made of 236
lattice points distributed as shown for ¥ in figure 2 of reference 3.
For W'A5 380 p01nts were used with a distribution approprlate to the
altered behavior of the dependent variable.
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The 1ift distributions of figure 4 are all of the same general
shape. In all cases the calculated lift tends toward infinity at the °
leading edge of the profile. This type of result, which is of course
Physically impossible, is well known from the linear theory of airfoils
at subsonic speeds. It is a result of the obvious fdilure of the small-
disturbance approximations to conform with the actual phenomena in’ the
vicinity of the leading edge. This local failure of the theory is
known in the linear, subsonic case to be of little consequence insofar
as the over-sll 1lift is concerned. It may be presumed that a similar
situation exists here. ’ o

As one proceeds rearward from the leading edge, the 1ift distribu-
tion falls more or less rapidly, reaching a value of zero directly
forward of the shoulder. This latter result could have been foreseen,
since the speed on both the upper and lower surfaces has a fixed
(i.e., sonic) value at this location. Directly to the rear of “the
shoulder, the 1ift distribution starts anew from zero. This must
obviously be the case, since the expansion from sonic speed is, in
Prandtl-Meyer flow, a unique function of the local turning angle, which
is the same for both surfaces. Rearward from the shoulder the 1lift
increases monotonically to a relatively small, finite value at the
trailing edge.

Over the front wedge, the four curves of the present study exhibit
a uniform progression w1th respect to ‘go., The curve of Guderley and
Yoshihara, however, crosses the present curves at several points.  The
reasons for this are not clear, though it is highly unlikely that such
a result could be in fact correct. The observed behavior may be due to
some consistent inaccuracy in the present numerical approach or to the
approximations introduced by Guderley and Yoshihara in satisfying the
‘boundary conditions for the interdeperdent portion of the " supersonic
expansion fan. Over the rear wedge, the present computations give vir-
tually a single curve for the four values of &.. There is again, how-
ever, a small 1ncons1stency with the results given by Guderley and

Yoshihara. This is as might be expected if the calculated flow over the

front wedge is in error in elﬁher case.
Lift-Curve Slope

A Figure 5 shows the generallzed slope of the llft curve at Zero .
angle of attack plotted as a function of the transonic similarlty param-
eter. Results obtained on the basis of the transonic small-disturbance
" theory are shown by three solid-line curves. FEach of these curves con~
sists of two segments separated by a gap within which the curve cannot
be defined on the basis of the avallable results. The. uppermost of the
three curves gives the 1lift of the complete profile; the other two show
the division of 1if't between the front and rear wedges.
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The left~hand segment of each of the curves in figure 5 shows the
variation of lift-curve slope over most of the range of flight speed in
‘which the bow wave is detached, which is the range of primary concern
in the present analysis. The calculated points from which these curves -
were drawn are shown in the figure. The points denoted by ‘squares were
obtained by mechanical -integration of the 1ift- distribution curves of
figure L. 7 The circled points on the vertical axis were located -on the
basis of the work of Guderley and Ybshihara

The right—hand segment of the curves in figure 5 shows the varia-
tion of lift-curve slope in the range of flight speed in which the bow
wave is attached and the flow is completely supersonic. To the order
of accuracy of the present theory, this condition exists for the double—

wedge profile at zero angle of attack when ¢ 2 o1/8 _ 1.260.2 Above

. this value, results completely consistent with the Pundamental assump-
tions of the transonic small-disturbance theory can easily be obtained
by analytical methods. To this end, one need only presume that the
speed is constant on each stralght—llne portion of the airfoil surface, .
a condition which is actually fulfilled over most of the pertlnent

range of . The necessary procedures are outlined in appendix C. To
the accuracy of the transonic small-disturbance theory, the results
provide an exact solution for the lift-curve slope of the front wedge
for all values of &, in the range of completely supersonic flow. For
the rear wedge -~ and hence for the complete profile ~ the solution is
exact down to a limiting value of go somewhat greater than 1.260. .
Below this 1imit the interaction of the shock wave from the bow and the -
expansion fan from the shoulder influences the flow over. the rear wedge,
with the result that the condition of constant speed is not satisfied.
The position of this limit is difficult to determine exactly; As shown
in appendix C, however, it must lie at a value of § less than 1.287.
The curves for the rear wedge -and complete profile are thus approximate
for at least a portion of the interval from 1. 287 to 1. 260 and are '
therefore shown dotted in this range. It can be demonstrated that
inelusion of the interaction effects in. the analysis'would"cauSe an
increase in the computed 1ift for the rear wedge. Exact results would
thus lie somewhere above the dotted portion of the curves in figure 5..

7"As in the earlier calculations of the drag coefficient at zero angle
(cf. page 36 of reference 3), the integration over a small interval
near the leading edge was carried out analytically on the basis of an
asymptotic representation of the solution in the’ hodograph Pplane.
8 attachment of the wave takes place at the somewhat lower value of

= 3/(")%° - 1.191. For 1.191 < E, <1.260 the wave is attached
but the flow behind it is still subsonic. :
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The most interesting aspect of figure 5 is the behavior of the 1lift
in the vicinity of shock attachment. Despite the gap in the curves in
this vicinity, i% is obvious that the lift-curve slope of the complete
profile must attain a maximum somewhere in the range from § =1, 058
to &, = 1. 287. This is in marked - and somewhat surprising -contrast
to the previous results for the drag coefficient at zero angle of attack,
which was found (reference 2) to decrease monotonically as the similarlty
parameter increased above zero. The peak in the curve in the present
case is accompanied by a similar variation in the lift-curve slope of
the front wedge. The results for the rear. wedge may or may not pass
through a minlmum in.the same range of P

A determination of the exact Shape of the curves in the vicinity of
shock attachment is not feasible on the basis of the present laborious
methods. The existing-curve for the complete profile does show a maximum
in the range of completely supersonic flow, but this is in the portion
of the range in which the computed curve is known to be erroneously low.
If exact results were available for all values of §_, the maximum would
undoubtedly be somewhat higher and displaced somewhag to the left. The
infinity which appears in the slope of the curve at €, = 1. 260 (see
appendix C) would probably disappear as well. The 1lift of the rear
wedge, which now goes to zero at § = 1. 560, would presumably remain
finite throughout.

Within the transonic range itself, the curves of figure 5 show
‘little variation for some distance above a similarity parameter of zero.
This is in accord with Guderley's recent analytical study of two-
dimensional flows with a free-stream Mach number close to 1 (refer-
ence 14). The results of Guderley's work imply that, to the accuracy
of the small-disturbance theory, the 1ift-curve slope does not vary as
the free-stream Mach number passes .through 1. The curves of figure 5
have been faired so as to conform with this requirement. It is apparent
that Guderley's result of zero variation may be taken as a good working
approximation even at Mach numbers some distance removed from 1. The
same result was found in reference 3 with regard to the drag coeffioient
of the complete profile‘at zero angle-of attack. .

Over most of the range of completely supersonic flow, the lift—
curve slope of ‘the complete profile exhibits the type of variation well
known from linear theory. This latter theory gives for the 1lift-curve
slope of all “thin profiles

dCl ) ).|,
da (4o°-1)

1/2 S » (59)‘
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which can be written in terms of the'transonic similarity variables as

4

t(m)(t/c)]““ N >

‘da
B (o}

The dashed curve in figure 5 is based on this equatlon. There 1s con~
siderable quantitative difference between the ‘linear and nonlinear '
results for values of § just above 1.287. " As ‘§O ‘1ncreases, how-
ever, the curves given by the two theories appear to converge. This
latter behavior is in accord with Sprelter s considerations’ (refer—/
ence 11) regarding the bas1c relationship between the llnear ‘and non-

,llnear theorles.

: To put the results in- more familiar form, the llft-curve slope of
the complete profile has been replotted in flgure 6 as a function of
Mach number for ¥ = 1.4, "The results of llnear theory give a unique
curve d=fined by equation (59). The nonl1near, transonlc theory pro-

vides a family of curves with thickness ratio as a parameter.s As

would be - expected, the- range of Mach numbers over which the linear
theory is a poor approx1mat10n becomes smaller as the thickness ratio
is reduced. It can be reasoned, in fact, that the nonlinear results
must tend toward the results of the llnear theory as t/c-—%io,.,

’,Center’of"Lift

e

Figure 7 shows the chordw1se posit1on of the center of lift (x/c)l
as a function of the transon1c sim11ar1ty parameter.‘ The .arrangement
of the flgure parallels that of figure 5. 'As before, the indicated
points were calculated on the basis of the lift distributions of
figure 4. The curve in the range of completely supersonic flow
(g 21.260) was obtained by means of the equations of appendix C.
Only results for the complete proflle are shown FEURN e

Here, as in reference 2, a multipl1c1ty of curves could be obtained
for each thickness ratlo by using expressions for the pressure coef-
ficlent and similarity parameter different from those of equations (k)
and (13). In view of the recent developments outlined in footnote 2
such complications now appear to be of lessened significance.




5U

NACA TN 2832 33

The movement of the center of 1ift with increasing Mach number is
of some interest. At a free-stream Mach number of 1, the results of
Guderley and Yoshihara indicate a position about 29 percent of the
chord aft of the leading edge. As the Mach number is increased, the
center of 1ift first moves forward, slowly in the initial stages and
then more rapidly as the condition for shock attachment is approached.
In the completely supersonic range, this trend is reversed; the center

" of 1lift then moves aft toward the midchord location given by linear

theory. Apparently, the reversal of the direction of motion must take

Place rather suddenly in the vicinity of shock attachment. The limit

of forward movement cannot be specified, except to say that it must lie
somewhere ahead of 22 percent of the chord (and probably aft of the '
leading edge). The dotted (i.e., inexact ) portion of the curve passes
DPrecisely through the quarter-chord point at £, = 1.260. (The corre-
sponding 1ift distribution is one of uniform 1ift on the front wedge
and zero 1lift on the rear.) Because of the interaction effects
previously discussed, an exact result would lie somewhat above the
dotted curve.

1

CONCLUDING REMARKS

The present calculations add support to the growing conclusion
(see references 2, 6, 7, 8, and 14) that no marked changes take place
in characteristics of airfoil sections a&s the free-stream Mach number
passes through 1. The establishment of this conclusion must be regarded,
in fact, as one of the major successes of recent research in transonic
flow. In the present case, as in the previous study of the drag coef- .
ficient at zero 1ift, the variation of the aerodynamic quantities with
free-stream Mach number is most rapid in the vicinity of shock attach-
ment.  Unlike the behavior of the drag coefficient, however, the varia-
tions here are large and characterized by a sudden reversal in the sign
of the derivative. In drawing conclusions from these results it must
be remembered, of course, that the theory assumes an inviscid medium
and an airfoil of small thickness and infinite span. It also assumes,
in effect, that the angle of attack is of an order smaller than the
thickness ratio. To what extent the results will be valid for viscous
flows about finite-span airfoils at practically usable values of the
thickness ratio and angle of attack is difficult to say. The effects of
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finite span, for example, will surely cause a.reduction in the variations
near shock attachment. In the present state of theoretical development,
the study of these effects is a task for experiment. '

Ames Aeronautical Laboratory . ‘
' National Advisory Committee for Aeronautics

Moffett Field, Calif., Aug. 1, 1952
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- ’ APPENDIX A
SOLUTION OF BOUNDARY-VALUE PROBLEM

FOR FRONT WEDGE IN HODOGRAPH PLANE

The solution of the boundary-value problems for ¥'y and ¥'p was
accomplished by finite-difference methods similar to those developed for
the calculation of ¥ in reference 3.  The description here will be
limited to the few features wherein the present work departs from that
discussed in the earlier paper. (See general remarks under METHOD OF
SOLUTION,) The notation and sketches follow the conventions used in
reference 3.

L

Finite~Difference Equations Common to Both Problems

The only finite—difference equations common to the problems for -

V'y and ¥'p but not found in the problem for V¥ derive from the bound-
ary condition on the horizontal axis (see sketches (e) and (f)). ' This
condition is given for both problems by equation (38) and is ¥'5(,0) = O
for n £-1. 1In the prev1ous work, the finite-difference equations for - .
lattice points located on a_boundary were obtained by approximation to
the boundary condition itself. In the present case, the approximation

- to the differential equation will be employed, and the boundary condition
incorporated through use of the equivalent symmetry property.

v Consider a typical point O on the horizon- /
tal axis as shown in sketch (g). Point 3 is a
fictitious lattice point located below the hori- - |a

zontal exis at 6 = -A, where A 1is the lattice -
interval. The finite-difference approximation to <4 4 0 4 2
the differential equation (20) of the present ' : o

text is given by equation (20) of reference 3 as V|

» , . |
Wip 4 ¥ - no(¥1yHTg) = 2(12no)¥io = 0 (A1) :
where 1o 1s the abscissa of point O. The symme- Sketch’(g)

try property leading to the boundary condition (38)
requires that V¥'g =¥';, so that for points on the horizontal axis equa-
tion (Al) reduces to ~

Vg + ¥y = bigry - 2120007 = 0 @)
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The point at the intersection of the horizontal axis and the shock
polar needs special consideration. Sketch (h) shows conditions at this
- point. Here, as before, point 4 ig a ficti-
3 tious point located below the boundary sym-
‘ fT . metrical to point 3. It follows from the
. poundary conditions (25) and (38), both of
' 4 which must be satisfied at the point O, that
2_a | a4 0 L‘ the first derivatives in the coordinate _
' ' +i Py directions are both zero at that point.  On
\ : the basis of this fact, if the function =

N ¥'(n,0) is expanded in a two-dimensional
. , A Taylor's series about point O, the following
. S :  finite-difference relations for the second
Sketch (h) derivatives are easily obtained:

1 = 1. l.| 7 1
¥glo = s -5 ¥'e 5 Vo

A?*'ee‘o =2¥'g - 2¥'g ’,k?A?W'nn o.

Here the symmetry properfy about the horizontal axis has been used‘to
equate #'4 to W!s. -Substitution of these relations into equation (20)
for 7 = -1 leads to the following finite-difference equation for the
“point O: . . o _ - . v

b(1-2K2)¥T - 5 (1-2K¥ +_wsv-[4‘+g (1-2%2) ]w =0 (a3)
Finite-Ditference Equations Speciai to V¥'p

The only finite-difference equation special to the problem for W'B
is the one used to terminste the field of computation_at some vertical
line on the left. As in the corresponding work for W, this equation is
derived from an asymptotic solution of the boundary-value problem valild '
for large negative values of 1. The derivation is parallel to that
described in detail on pages 16 and 17 of reference 3.

The boundary conditions which
must be satisfied by V¥'p at large
negative values of 17 are shown in
‘sketch (i). The shaded section shows
the anticipated variation of V'gp
for constant 7. A solution of the

_differential equation which satisfies
the given boundary conditions is

¥7,6)=0

for -0

‘ 5;/7, 0)=0

Sketch (1)

5
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""B(ﬁﬁ) ’= Z Cn cos.<26 >x J— Kl/a[ _2’ )3/2J

n=1

where Kj/z is the modified Bessel functlon of the second klnd of
order 1/3 and the C, are appropriate constants. If only the leading
term of this solution is used and the Bessel function is replaced by the
first term of its asymptotic expansion, there results

¥'5(n,8) = C cos <;—a-i> x(-n)"** exp [-v 31;—. (-271)_3/2:'

W

As in the earlier work, let A denote the lattice interval and B some
large negative value of 1 'such that A/B<<1l. It then follows from the
‘foregoing solution that, to a first order and for a given value of 6,

BJZ(B;A;) ( _...) exp< E > | ('Au)‘

By substituting this relation into equation (Al), a flnite-dlfference
equation can be obtained which is valid for points on the line 1 =

and does not include any points to the left of this line (cf. equatlon (22)
of reference 3) .

Finite-Difference Equations Special to ¥'p

The only equations special to the problem for ¥'p arise as a con-
sequence of the condition along the upper boundary, where the values
of  ¥'p are prescribed as a function of 7. Along most of the boundary,
this condition can be met by substituting the .prescribed values directly
into finite-difference equations of the type (Al) for points one interval
below the boundary. Because of the nature of the boundary values
near 1 = 0, however, some change from previous procedures is necessary
in the vicinity of the shouldeér.. Modification is also required in the -
equatlons used to- terminate the field on the left.

v Points near shoulder of Wedge.- From the known behavior of ¥ in .
the vicinity of the shoulder (see Guderley's results, reference 13, for-

" the flow around a convex corner), it can be shown that the variation

of W¥'p along the upper boundary near 1 -=0 must be of the form

m(n,ew)=\Tre<n,_ew>=p(-n>1/2‘ )

where D is a constant of proportionality. ' A singular solution of the
differential equation (20) which is valid in the vieinity of the shoulder
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and which satisfies the boundary condition (A5) is also obtainable from
Guderley's results. This solution is,‘in the present notation,

¥ /2 (1o g 1/s F< '1. K A6
where F is the hypergeometrlc function and C §(n, )‘iS'defined by

29 (ou0)

~ 8
Equation (A6) is suitable for use near the upper boundary (9 6ys & 2 0).
Near the sonic line (-f 2 C it —!n) the following alternate form is
available" S S o .
| 3 2T 112 -
( o) = 22/3 '{ [(-ﬂ) + — (6~ 9) ] : F;(; Z g: §5~l_ ‘> +
i/2 .
(=n) _/ <1 2 L, )} | (A7)
02/3(1_¢)1/6 " \6 33 1-¢
If equation (A7) is evaluated on the sonic line,ithere results -
o uye e S .
¥, (0,0) = 272 1 (oy-0)"/ SRR V)

This result is in agreement with equation (32), whlch was developed from
other considerations. It is apparent from equations (A5) and (A8) that
a gsolution for V¥'p will have a singularity in the first derivatives at

the point 1 = O, 8 = Gw. : , o o L e : /

Because of the foreg01ng s1ngular1ty, a dlrect numerlcal calculation
of W.A might be expected to run into dlfficulty in the v101n1ty of  the
shoulder. Attempts along these lines lead, in fact, to the unlikely .
result of negatlve 1ift over a small region of the proflle Just forward
of the midchord. Reductions of the lattice interval to quite small values
served merely to decrease the extent of this region. This is in contrast
to the previous work for # (and for W’B as Well), in which the singu-
larity at the shoulder appears in the second derivatives. In that case,

a sufficiently accurate solution for the unknown function could be obtained
by direct calculation. In the present work, it was’ found" necessary to .
subtract out the singularity in the first derivatlves ‘according to the
follow1ng procedure .

Let a function &V'y be defined such that

By = W"A;q,'AS




NACA TN 2832 _ ' ; o 39

-where V¥',  is a singular solution of the type given by equations (A6)
and (AT). °If the actual, numerically determined values of ¥'a on the
upper boundary are examined, it is found that for a small length of the
boundary near the shoulder these values can be replaced to a good approxi-
mation by a 1/2-power variation of the form given by equation (A5). This
is done, and the constant D  is determined such that within this length
of boundary V', (n,6y) =¥'a(n,68;) or ¥’y = 0. On this basis, a
boundary-value pProblem for ¥’y can be defined for g small region near
the shoulder as shown in sketch (§). The ‘

problem for &V¥!'p within this region is
solved jointly with the problem for LA
in the remainder of the field. The two
regions are fitted together by the use of

|
|
|
| %
the case of a graded mesh (see reference 15). r , w ' 4

overlapping lattices, much as is done in 4-8)
,%emWMﬁwmmmtmmWMMnM% 3ZW%**f**_—
must now be utilized to make the transition 4 A A ‘ 4
between the two lattices at all their common Sketch (j) :

points. It is seen from sketech (3) that

conditions for S¥'s  on both the upper boundary and sonic line are
identical with the corresponding conditions for ﬁ. The finite-difference
equations for the calculation of d¥'y can therefore be taken over
directly from the Previous work.

As nearly as one can Judge from experience with various lattice
spacings, results obtained by the foregoing brocess are quantitatively as
well as qualitatively reliable. The primary source of error is in replac-
ing the actual values of ¥'p along the upper boundary by a 1/2-power
variation. Since the region over which this is done in the hodograph
corresponds to a very small portion of the chord in the physical rlane,
errors from this source are probably small. C :

‘Points far to the left.- The
boundary conditions for ¥'A at
large negative values of . n are
shown 1n'sketch gk). From the . . %19,4,)-%(7,8,)
asymptotic solution for the basie
problem (equation (21) of refer-
ence 3), the expression for LAY

,<_ Y0

along the upper boundary is found for (
to be " 7=
Y(p,0)-0

Sketch (k)
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Vip (1,08) = Fo(100=E ()7 e | - - (en*2] o)
' o - W o - :

where E is a constant. .

Because of the nature of the boundary condition (AlO), it is not
possible to write an asymptotic solution for V' for large negative .7
in a single term. For this reason, the procedure previously used to
terminate the field of calculation at some location on the left cannot
be applied in the present case. An alternative procedure, somewhat more
arbitrary in nature, can be devised by writing V! in the form :

‘ WfA(n,G) = W'A(n,ew) f<5ﬂ”A(Q:e) : B (All)
where &V¥'y is now defined by s¥1y (n,0)=V1 (n,0) - ¥ (0,6y) (see
sketch). The attenuation of WQ\ in going from a point at n = =B
to a point at 1 = ~B - A is then found by treating each of the terms -
in equation (A11) as an independent quantity. The attenuation of
WfA(n,ew) is found from equation (AlO) by a procedure similar to that used
in obtaining equation (Ak). The result is o T

‘#'A('*B-A,ew) = [ (l - A) exp <" 8 N EB>1W'A (-B,04)  (A12)
_ . g/ ey /AT

To obtain a corresponding equation for ~&¥' , it is assumed that for a
given value of 6 this quantity attenuates in the same manner as was
previously found for V!'gp.  One thus has from equation (A) -

oonirnr [ (o) o (-2 ) rcn

Substitution of these expressions in eqpatibnv(All) for .1 =i_B - A
gives finally oL RIS : S p

W

{[ex (- - » -1]w'A<-B,(eW) . vl (-6,0)} .-<A14) .

20y

Since V' (-B,6;) is a known quantity for any given value of B, this
equation can be used to terminate the field of calculation in the same
manner as was done with equation (A4). The-considerable element of
arbitrariness in the derivation of equation (Al4) can be tolerated since
the over-all solution is insensitive to changes in the left-handlportiOn
of the field. s
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Solution of Finite-Difference Equations

The ‘techniques used to obtain a solution of the finite-difference
equations for "y¥', and ¥'p were the same as those described in refer-
ence 3 for the basic solut1on of V. 1In general, the graded lattice as
used for V¥ (see fig. 2 of reference 3) was suitable for the solution
of- ¥'g. For V', however, different gradations were necessary with -
the smallest lattice spacing being used near the shoulder (point B of
sketch (e)). The value of V¥'gz at the intersection of the shock polar
and the sonic line was chosen as 10,000 so that the previously obtained

! values of w could be used to,prov1de the initial guess for WﬁB;

In the course of the present work, a useful technique was found for
locating regions of relatively large error in the numerical solution.
By use of ohe form of Green's theorem plus the differential equation (20),
it can be shown that around any contour enclosing a region. in which
equation (20) is sat1sf1ed the following relation must hold:

-

| f (2n¥ipdn + Vyao) =0 (a15)

In a numerical solution the line integral in equation (A15) will not,
except by rare coincidence, be precisely zero around any given contour.

P The amount by which it differs from zero may be taken as a rough measure
of the adequacy of the numerical solution over the region within the
contour. If the entire field of calculation is subdivided into a number

- of contiguous regions, it is thus possible, by evaluating the integral
around each of the enclosing contours, to locate regions within which
the error is relatively high. The solution in these -regions can then be
improved by advan01ng locally to a finer mesh. This technlque was found
to be of great help in the present work. It would probably be useful in
other ell1pt1c boundary—value problems for which a relatlon analogous to
equatlon (Al5) can be obtalned.
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APPENDIX B _
CALCULATION OF FLOW OVER REAR WEDGE

IN PHYSICAL PLANE

The procedure used to calculate the flow over ‘the rear wedge has
been outlined in the section METHOD OF SOLUTION, The fundamental opera-
tion is to determine, by stepwise methods, the initial rate of movement
of the known intersection points in the basic characteristics net. The
methods which are used depend on the fact that these points are, by
virtue of the basic characteristics comnstruction, points of fixed 1,6
(cf. equations (55) and (57) of reference 3).

The first step is to determine the 1nitial‘rate of movement of -
those points at which the Mach lines of the basic characteristics net
meet on the sonic line. For this purpose, consider equations (48), -
which give the initial rate of movement of a general point of fixed M,6.
If these equations are specialized to apply to points on the sonic line,
the following relatlons are obtained:

X'(0,8) = f \yv de , } | . (Bla)
) | 1/3 ‘ L
Y7(0,6) = (291’) — ¥ | | (B1b)
M, o

To write equation (Bla) the path of integration in equation (48a) is
taken along the upper boundary from O to B (see sketch (e) on page 21)
and thence downward along the sonic line.  The contribution of the =
portion from O to B is zero by virtue of the condition (37) In apply-
ing these equations, the value of I, is known from the basic solution.
The integral in equation (Bla) is evaluated by mechanical integration
of a curve of numerically determined derivatives. Proper allowance is
made for the singularity at the shoulder by integrating the singular
solution analytically. The component rates of movement of the sonic
point at the shoulder are both seen to be zero. :

The next step in the solution is to calculate the rate of movement
of intersection points downstream of the sonic line. This is done by
proceeding stepwise along consecutive downgoing characteristics.

»
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Consider three typical net points as shown in sketeh (1) (cf. also
fig. 4 of reference 3). The dashed lines represent the original posi~
tion of the Mach lines through points a, b, and c, and the solid lines
represent their displaced posi-
tions corresponding to a small,
finite angle of attack a.

Since the intersection points in
the Mach net are points of Fixed
n,8, the components of their
displacement are given by aX!

and a¥'. The slope of each segment
of Mach line is taken, in accord
with the procedures of refer-

ence 3, as the average of the
slopes calculated at the two end
points. The slope calculated at
each end point depends, in turn,-:
only on the value of 7 at that
point (cf. equation (54) of
reference 3).

!
a%

It is desired now to deter-
‘mine X' and Y' at point ¢ in Sketch (1)
terms of X' and Y' at points a ‘
" and b. Since the value of 7 at a given net point is the same in the
displaced and undisplaced pos1tions, it follows from what has been said
above that each Segment of Mach line must retain its origlnal slope
after displacement. Tf this slope is denoted by m, the following
relations are then readily obtained:

,

Tl Y +ipcX b ~HigcX e

Xt = - ~ ~ (B2a)
: Ihe = Mo
Ty Yy ~Bg Y1 Hiaclipe (XM -X'y ) oy
Y, = Mhe!'a ac- b a_cmbc( b-X'a) (B2B)
Ihe - Hge

With these relatlons, it is a simple matter- to calculate the initlal
rates of movement of successive net p01nts on consecutive downg01ng
characteristics. For the first characteristic to be considered, point
b is taken at the shoulder of the profile, where X' and Y' are both
zero. Thus, X'c and Y'¢ for net points on this characteristic can be
determined solely in terms of X'5 and Y's and the slopes fge and Mpe.
For the remainder of the downgoing characteristlcs, X'p and Y'y, are

,
aX;
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known from calculations along the characteristic immediately preceding.
The actual calculations can be carried out in straightforward tabular
form. T ' : '

The fdfégoing procedure enables the éalCUlationiof Xfﬁand Y' for
all net points except the ones originally at the surface of the rear
wedge. For these points, consideration must be given to the required
‘boundary condition at the surface. This boundary condition is

_9(X,+O;c,) = - (O, 4a) ' -~ (B3)

from which it follows that
or(ER40) = -1 (B4

The problem now is to determine X' and Y' -at the surface of the
wedge in such a way that equation (B4) is satisfied. To do this equa-
tion (53b) is first specialized to the surface of the wedge, where it-
is readily shown that Xg = ¥y = 0. In view of condition (B4), there
‘results ‘ v . :

Y1 (n,-6y) = Tg(n,~6w) B ()

The value of Yt at poihts originally'On the surface of'the wedge 1s

thus fixed directly by thé_basic solution. The corresponding value of

X' can be found from a construction analogous to that of sketch (1)

and is ,

Yig-Y'o -ligcX's
~flg ¢

X1, = (B6)

The point ¢ 1s now the point originally on the surface’of the wedge
(i.e., Y'. 1is as given by equation (B5)), and the remaining notation
is the same as in sketch (1). i 8 '

Application of equation .(B5).requires the knowledge of Ye(n,-ew),_
which in the case of the wedge profile is equal to l/Gy. Evaluation
of the latter derivative can be carried out directly from the basic
Mach riet, but the procedures are cumbersome and inaccurate. A better ”
method is to use the equations of ‘motion (ef. equation (6) of refer-
ence 4) to express By in terms of fy. Following this procedure, one
obtains finally’ o - - o

. o " (oo )1/3 .
¥ (ny-0y) = ——F—— BT
TONY T 2R(%,0) g (,+40) oo
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The quantities 1 and n vwhich appear here are e3511y evaluated from
the basic solution for the chordwise distrlbutlon of n . .
The precedlng eqpations enable the calculation of the initial rate
of movement X? for points originally on the surface of the rear wedge.
The final step is to determine the corresponding distribution of 1ift..

For this purpose, equation (53a) is specialized to points on the rear
wedge to obtain »

7' (X,40) = - X’_(Tl,"ew)/iﬁ‘(ﬁ:"ew) |

which, in view of the boundary conditlons, can be shown to be equlvalent
to :

N(H0) = = X (n-0)ig(E00) - (38)

The distribution of 1ift is then obtained from equation (57).
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APPENDIX C

SOLUTION OF PROBLEM FOR COMPLETHLY SUPERSONIC FLOW

' Calculatlon of Llft-Curve Slope and
" Center of Lift . ' B

If conditions are such that E.OZ 21/ 3 =1, 260 (corresponding
to 6y<1; cf. eguation (13)), then the basic flow over the profile at
zero angle of attack is completely supersonic. The solution for the
lift-curve slope and center of 1lift at a vanishingly small angle of
attack can then be carried out analytically as follows:

Consider a completely supersonic flow about the double-wedge profile
at a small angle of attack. " In the physical plane the flow field has '
the well-known appearance shown on the left in sketch (m). The corre-
sponding hodograph of the flow along the upper surface, in terms of the

4

Prandt! - Meyer

/ 5""’ ansion — Shock polar
LA Al
’/fGWMMEWW%WC
< .
N -
1 AN .
} 7 \\ % 7
\
A\
\
1 \
4=~ v e \2
\
Sketch (m)

normalized small-disturbance variables n and 6, is shown on the right.
The quantities 6y and a are, as before, the half-angle of the wedge
and the angle of attack (also normallzeds Except for a small range

of &, Just above 1.260 (see below), flow conditions must be conmstant ‘
along each of the segments 1 and 2 of the upper surface. In the hodo-

- graph each of these segments is thus represented by a single point
located as shown. It is apparent that for a given value of @6, the
speeds 7m,; and np, which are the primary unknowns in the problem, are
functions solely of the angle of attack e 8
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To find the lift-curve slope and center of 1lift it is necessary’
first to find the derivatives = (dn;/da)y-o 8nd 7 1, =@ny/da) g =0-
This can be done w1th the a1d of the equatlons for the shock polar

= (1-n) ¥ 14 o (c1)

and for the downgoing characteristic*®
' 8/2 N s ‘
@ = constant - 515- 7872 - (ca) -

" To find 1%;, one must utilize the ‘boundary condition 81 = By - O
Substitution of this condition into equation (C1) provides the following
implicit equation for N4t

6y - a = v(l'ﬂl)“/l“’"“l : . (c3)

Differentiation -of this equation giVes

da ; 1+3ﬂ 1

dny  24/T4m;

From this it follows that

24 147 : .
Ny o= - (k)
1+3n, ‘

where, as in the text, the bars denote the value of 1, at a=0. :
The value of 17, can be found in terms of the parameter 6y by solving
equation (C3): for n, with o set equal to zero. The result, obtained
through standard methods for the solution of cubic equations, is

~/3 S
2 cos ——9 ‘ o o

® = arc co§ <l%/§ 9w>

10 compare equation (53) of reference 3.

wvhere
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To find 17 2,'equat10n (c2) for the downgoing characteristlc is
first specialized so as to pass through the point 1. This gives

B esE a/z a/z
9=(9w-a) +—-§5—-(nl il )

Substitution of the boundary condition 62 = - Gw - o then prov1des
the result that - _ L o o
L ] 2/a

My = <T]15/25+’7:: 9W> o

2

Taking the derivative with respect to «, Qné obtains finally at a =0

‘ At . |
M, = . n'y (c6)
» ] 2
vhere 7', 1is given by equation (Ch4) and f, by equation (C5).

Since the value of n" is constant on. each segment of the profile,
the 1lift-curve slope is easily found from equation (57) and is

[(7+l)(t/c )] /3< 2(,29")1/3("'1+ n"g)

G."'O

Substitution from equation (C6) gives

[(74'1) (t/c ] /8 ( da >a—o v 2(26W)1/ST] 1 l + - - 3/21 3 . \ i-]_/al (C?)

The moment—curve slope, for moments taken about the leading edge, is
found to be .

1/5 L e s o
(1) (/o2 (S22 ) = -3 @ s
or . . .
N 172
[(r+1) (t/e))™ %@ | =-3 (29w)1/3 e 3n1 —i7a | ()
. o : 1 5
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The position of the center of 1lift is given accordingly by

37,272
1+
<> _laen/ia)oy 1 3,2 (3/V2)01”° (c9)
(dcl/d“)a_o R R |

1 ;
[ﬁ13/2+ (3&/—5)\9‘{]1/8

In equations (CT) and'(08), the first term inside the brackets repre-
sents the contribution of the front wedge, -the second term that of the
rear.

Equations (C7) and (C9) are the basis for the curves shown in
figures 5 and 7 for values of £, 21.260. The results show certain
.curious features when the flow over the front wedge is just sonic
(i.e.; f,=0, 6y=1, E,=1. 260). These are as follows:

(a) The 1lift contrlbuted by the rear wedge is zero (see equa~
tion (C7)

(b) The center of lift is at the quarter-chord point (follows
from statement (a) plus the condition of uniform 1lift on the front
wedge; see also equation (C9)).

(¢) The rate of change with respect to is infinite both for
the lift-curve slope of the complete profile ang for the position of
the center of lift (follows from differentiation of equations (07)

and (C9)).

These results are associated in every case with the behavior of the 1ifd
calculated for the rear wedge.

Estimation of Lower Limit for Constant Speed
: Along Rear Wedge

The features Just enumerated, though having a certain curiosity in
themselves, cannot be accepted as completely correct. Because of inter-
action effects between the shock wave from the bow and the expansion
fan from the shoulder, the fundamental condition of constant speed at
the surface of the profile will not be satisfied along the rear wedge
until the value of €, .1s somewhat greater than 1. 260. Until then,
disturbances reflected from the shock wave will reach the rear wedge
and cause a slight decrease in speed toward the trailing edge. This
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effect will cease when the forwardmost reflected Mach wave Jjust touches

the trailing edge. The exact value of €, at which this condition will
be met is difficult to determine. An upper bound can, however, be esti-
mated as follows:

Consider the basic flow field (a_o) over the upper half of the
profile when the first reflected Mach wave Just strikes the trailing
edge. Sketch (n) shows such a flow field as it would appear in tran-
‘sonic similarity form (cf. pp. 12-13 of reference 2). In drawing the
sketch a special assumption has been introduced beyond those implicit
in the small disturbance theory, namely, that the first reflected Mach

Shock wave

First Mach wave

of expansion fan

\“__ Assumed /locatior
of first reflected

Mach wave
o 1/2 374 /
x/c
Sketch (n)

wave is straight and has an angle of inclination u  equal to that of
the first wave in the expansion fan. With this assumption, the corre-
sponding value of €, 1s easlly determined. Since the reflected wave
must actually be curved downstream, the value so determined will be
greater than the correct value for the required condition.

On the basis of sketch (n), the following equation can be wfitten
between the shock angle A and the Mach angle u:

tan A = = tan u (c10)

w. -

A ‘relation between the shock angle A and the speed n in the region
behind the shock can be obtained from equation (C3) and the known prop-
erties of the shock polar. The result is
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(26,,)*/°

v, 141,

tan A =

An analogous expression for the Mach angle u is given by equation (54)
of reference 3 and is

1/3
(2ew)

«/21']1

tan p =

Substitution of these relations into equation (C10) and solution for Ny
gives : '

The accompanying value of Oy, found from equation (C3) with a=0, is

ew = 0‘9685

This corresponds, according to equation (131, to
t,= 1.287 - (c11)

Thus, for values of ¢  between 1.260 and some limit less than 1.287,
the results of equations (CT7), (C8), and (C9) are not exact insofar as
the contribution of the rear wedge is concerned. Tt can be reasoned
that in this range an exact solution would indicate more 1ift for the
rear wedge than does the present analysis.
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TABLE I.- VALUES OF V'g

FOR 6y = 1.6 (£5=0.921)
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-1 6 ¥'B 6 ¥'s 0 ¥'B -1 e | vy
[o} 1.5 199 |11 4592 1.25 1699 ) 1.2 | 0.3 | 316
1.h 531 1.075 | 5642 1.2 2012 .2 | 30
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1.2 1826 1.075% { 2755
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1 8267 1.125 | ho8h 1.5 332 .3 | 287
1.1 4870 L.k 669 .2 |28
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TABLE II.~ VALUES OF V', FOR Oy = 1.6 (£o=0.921)
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1,h25 2137 1.575 2784 1.55 3klg 1.35 2394
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